Exam. Code : 103201

Subject Code: 1255

B.A./B.Sc. 1st Semester CHEMISTRY (Organic Chemistry)—I

Time Allowed—3 Hours] [Maximum Marks—35

Note:—Attempt five questions in all, selecting at least
one question from each Section. The fifth question
may be attempted from any Section. All questions
carry equal marks.

SECTION-A

- (a) Ortho-dichlorobenzene has a dipole moment of 2.5 D
 while para-dichlorobenzene has a zero dipole moment,
 explain.
 3
 - (b) What are different types of Carbenes? Discuss their relative stability. 4
- (a) What are Carbanions? Discuss the orbital structure of a Carbanion.
 - (b) What is Hyperconjugation? Discuss with suitable examples.

44(2121)/MM-642

(Contd.)

SECTION-B

- (a) Chlorination of n-Butane in the presence of light gives a mixture of 72% of 2-chlorobutane and 28% of 1-chlorobutane while bromination gives 98% of 2-bromobutane and 2% of 1-bromobutane. Explain.
 - (b) Complete the following reaction with suitable mechanism:

$$\begin{array}{c} CH_3 \\ + CCC - C = CH_2 + HBr \longrightarrow \\ CH_3 \end{array}$$

(a) Complete the following reaction with suitable mechanism:

$$Ph = Ph \xrightarrow{\text{Na/Liq.NH}} Ph$$
Ethanol

(b) How will you convert acetylene to 2-pentanone?

SECTION-C

- Discuss Baeyer's strain theory. How it is used to explain the reactivity of cyclopropane and cyclobutane rings?
 Also discuss its limitations.
- Explain in detail various differences between S_N1 and S_N2 reactions.

44(2121)/MM-642 2 (Contd.)

SECTION-D

- (a) Explain what are non-aromatic compounds? Give two examples.
 - (b) Poly-substitution products are observed in Friedel-Craft's alkylation but not in Friedel-Craft acylation when the electrophilic reagent is present in excess. How do you explain this?
- 8. (a) Chlorination of nitrobenzene gives m-nitrochlorobenzene while nitration of chlorobenzene gives 2, 4-dinitrochlorobenzene, why?
 - (b) Complete the following reaction with suitable mechanism:

$$C_6H_6 + H_3C CH_2 \xrightarrow{H_5SO_4}$$
 3